Analyses procedure of passive samplers for SO₂, NO₂, O₃, NH₃, HCI, HNO₃ and carboxylic acids

Sample preparation

	Impregnat <i>ing</i> chemical	Solvent for extraction	Method	Analyte
NO ₂	Triethanolamine, PTIO	Saltzman Reagent ⁽¹⁾ , DIW	UV-VIS ⁽¹⁾ , IC	NO2 ⁻
SO ₂	Potassium Carbonate	H ₂ O ₂ 0.03% in DIW ²	IC	SO 4 ²⁻
O ₃	Sodium Nitrite	DIW	IC	NO3 ⁻
NH ₃	Citric Acid	DIW, Reagent for NH ₃ ⁽³⁾	IC, UV-VIS ⁽⁴⁾	NH4 ⁺
HNO ₃	NaCl, glycerin	DIW	IC	Cl ⁻ , NO ₃ ⁻
HCI, Fatty acids	Triethanolamine	DIW	IC	RCOO ⁻

DIW water for IC application.

- 1. Reagent for NO₂ and NO_x: Fill a reagent tube almost full of water and shake until complete dissolution.
- 2. H₂O₂ 0.03%: add 0.1 ml H₂O₂ 30% into 100 ml Dl water.
- 3. Reagent for NH₃: Contact Envibiochem Binh Lan for details.

2. Turn or pry the upper part to open passive samplers.

4. Add 5 ml of solvent.

5. Shake 45 min. Wait 1h.

3. Cut a filter into pieces and transfer to a plastic tube.

6. Quantify by UV-VIS analyzer (NO₂, NH₃, NO_x) or IC.

Note: Resemble of passive samplers should be done in clean environment. Operate with glove and forcets while working with passive samplers.

Smaller or bigger volume of solvent may be used depending on duration of exposure and level of air pollutants in the environment to be monitored.

1. Quantification of extracts

2.1 Methods

- NO₂, NH₃, NO_x: spectrophotometric method using a VIS analyzer.
- NO₂, NH₃, NO_x, SO₂, NH₃, O₃, HNO₃ và HCI: ion-exchange method using an ion exchange column.
- Carboxylic acids: ion-exclusion method using an ion exclusion column.

2.2 Standards

Working standards of 0.200; 0.500; 1.00; 2.00; 5.00 và 10.0 mg/l (μ g/ml) are made by dilution of a stock standard and should be discarded after 24 hours. The stock standards of 1000 mg/l are supplied by Envibiochem Binh Lan.

ST₁	10,0 mg/l	ST ₂ 5,0	00 mg/l	ST₃ 2,(00 mg/l	ST₄ 1,0	00 mg/l	ST₅ 0,5	00 mg/l
Stock	Water*	ST ₁	Water*	ST ₁	Water*	ST ₃	Water*	ST₃	Water*
1 ml	Fill up to 100 ml	10 ml	10 ml	4 ml	16 ml	10 ml	10 ml	5 ml	15 ml

* DI water (for IC) should be used to avoid contamination. NO₂, NO_x standards are diluted with the Saltzman Regeat, NH₃ standards are diluted with the Reagent for NH₃ in the case of the spectrometric quantification.

2.3 Calibration

Calibration curves of $C_i = f(S_i)$, where i refers to a pollutant of interest, C is concentration of the pollutant in the extract and S is a pick area of the pollutant, should have correlation coefficient not lower than 0.997.

2.4 Quantification

Inject 1 standard after each 10 samples to check repeatability. Adjust calibration curves when needed. Concentration of a pollutant in the extract is evaluated from the calibration curves.

Dilute an extract when concentration in the extract outside calibration curves.

2. Evaluation of pollutant concentration in ambient air

The amount of air pollutant collected is estimated by the expression (1)

$$m_a(\mu g) = V_{extract}(ml) \times C_{extract}(\mu g / ml)$$
 (1)

Where V_{extract} is a volume of solvent used for the extraction and C_{extract} is concentration of a pollutant in the extract.

Concentration of a pollutant in the ambient air C_o is evaluated from the amount of the pollutant collected m_a (µg), conversion factors (ppb.h/µg) and duration of sampling t (min) by using the following expression

$$C_{o}(ppb) = K \frac{m_{a}}{t} \times 60$$
 (2)

Conversion factors at 25°C for the aforementioned pollutants are given in the Table below.

	Analyte	Teflon windshield	SS windshield	F(ppb→µg/m³)	
			K (ppb.h/μg)	25°C	30°C
NO ₂	NO ₂ -	527	518	1.88	1.85
O ₃	NO ₃ -	186	167	1.96	1.93
SO ₂	SO 4 ²⁻	642		2.62	2.57
NH ₃	NH4 ⁺	600		0.61	0.60
HNO ₃	NO ₃ -	296		2.58	2.53
HCI	Cl ⁻		45.4	1.49	1.47
НСООН	HCOO ⁻		79.4	1.88	1.85
CH ₃ COOH	CH₃COO ⁻		73.2	2.45	2.41

Conversion factor is temperature-depending and is adjusted by the following expression

$$K_{T_2} = K_{T_1} \left(\frac{T_1(K)}{T_2(K)} \right)^{1.5}$$
 (3)

<u>Example 1</u>: The amount of NO₃⁻ collected by O₃ passive sampler with SS windshield after 2 (336 h) of exposure was 13.7 μ g. The average ambient air temperature during exposure was 25°C. Ozone concentration in the ambient air would be

$$C_{o} = \frac{13.7 \ \mu g \times 167 \ \text{ppb.h} / \mu g}{336 \ \text{h}}$$

= 6.81 ppb = 6.81 ppb × 1.96 \mu g / m³ ppb = 13.3 \mu g / m³ = 13 \mu g / m³

Example 2: as in the example 1, but the average ambient air temperature during exposure was 30°C. Conversion factor K would be

$$K_{T_2} = 167 \text{ ppb.h} / \mu g \left(\frac{298}{303}\right)^{1.5} = 163 \text{ ppb.h} / \mu g$$

Ozone concentration in the ambient air would be

$$C_{o} = \frac{13.7 \ \mu g \times 163 \ \text{ppb.h} / \mu g}{336 \ \text{h}}$$

= 6.99 \ \text{ppb} = 6.99 \ \text{ppb} \times 1.93 \mu g / \text{m}^{3} \text{ppb} = 13.49 \mu g / \text{m}^{3} = 13 \mu g / \text{m}^{3}